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1 Human Semi-Supervised Learning

While both Supervised Learning (SL), in the form of classification, and Unsu-
pervised Learning, in the form of clustering, have been well studied in Cognitive
Science, it is only recently that the Machine Learning (ML) concept of Semi-
Supervised Learning (SSL) has been applied to human learning.

In a SL setting, a learner is presented with a set of labeled items (x, y) and
is asked to use these item/label pairs to learn the underlying classifier (a.k.a.
concept) f : X 7→ y. SSL differs in that, in addition to the labeled data, the
learner is also presented with a (usually much larger) set of unlabeled data. If the
learner makes certain assumptions regarding the distribution of the unlabeled
items p(x) and the class conditional p(y | x), they may be able to learn the
concept more accurately and potentially faster than with labeled items alone,
given that the SSL assumptions made are appropriate.

Investigation of how humans are affected by unlabeled data in a super-
vised categorization task, and how the resulting behavior compares to the well-
understood behavior of SSL ML models, can lead to further understanding of
human learning, improvements in human teaching strategy, improvements in
human/machine cooperative learning and, potentially, improvements in the ML
models themselves.

2 Our Empirical Evidence for Human Semi-Supervised
Learning

Our group is among the first to investigate the effect of unlabeled data on human
category learning [13]. Our team of ML, Cognitive Science and Educational
Psychology researchers showed that humans are affected by unlabeled data.
Furthermore, the resulting behavior can be accurately modeled by ML (SSL)
techniques. In this study human participants were first trained to learn on
labeled items varying in one feature to learn a binary classification concept.
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Each participant was then exposed to and asked to classify unlabeled data drawn
from a bimodal Gaussian Mixture Model (GMM) distribution. The trough
of this GMM was shifted away from the decision boundary indicated by the
labeled data. One of the assumptions available in the SSL framework is the gap
assumption: that a classification boundary will lie along a low-density region
(gap) of the unlabeled distribution while a boundary which runs through a
high density region is assumed unlikely. The unlabeled distribution is shifted
so that the trough, or gap, in the distribution violates this assumption. The
fact that the classification boundaries implied by participant behavior drifted
towards this shifted trough showed that humans are in affected by unlabeled
data. Additionally, the behavior matches existing SSL model predictions. A
second experiment by Kalish et al. resulted in similar findings [6].

To further understand human SSL, a third experiment was devised to explore
how humans would behave when exposed to unlabeled drawn from a distribution
designed to be explicitly contradictory [8]. The task was again binary classifica-
tion, with participants asked to label unlabeled items interspersed with labeled
items, where items varied in two dimensions. Participants were split into two
conditions which varied in the underlying unlabeled distribution. In the “help-
ful” condition a gap in the unlabeled distribution existed overlapping and par-
allel to the labeled classification boundary. In the “harmful” condition the gap
in the unlabeled distribution was orthogonal to the labeled boundary. Learn-
ers making use of the gap assumption should learn the concept faster with the
helpful unlabeled distribution. It was found that, without time pressure, par-
ticipants in both conditions performed equally well. However, when required
to respond rapidly, participants performed substantially better in the helpful
condition, indicating that they were affected by the underlying distribution of
unlabeled data in a way that enhanced their performance.

While the use of gaps in the unlabeled distribution is a common method
of achieving SSL, there are other properties of unlabeled data that can affect
learning. A fourth experiment was designed to investigate the effect of present-
ing unlabeled items ordered in time [12]. Human participants were shown a
sequence of labeled training items, varying in one dimension, and asked to learn
a binary classification. They were then asked to label a separate set of unla-
beled test items. Participants in each of two conditions were shown exactly the
same set of labeled training and unlabeled test items, but the ordering of the
unlabeled test items differed by condition: either in a sequence ordered from left
to right in feature space or right to left. It was found that humans, shown the
same labeled data, produced different labelings of the test items depending on
the ordering. The classification boundary was found to shift in one direction or
the other in feature space depending on the direction of sequence presentation
order. Several SSL models were presented which produced behavior similar to
that of the human participants.

Another SSL assumption which we investigated is the manifold assump-
tion [2]. Under this assumption, items are assumed to lie along a lower di-
mensional manifold in a higher dimensional space. For instance, a set of items
described in a two dimensional feature space may in fact all lie along a 1D line,
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or manifold, in this 2D space. Items assumed to lie along a manifold can also
be assumed to share any label information attached to items which fall on that
manifold. A label for one point on the manifold can be allowed to propagate
to any unlabeled items sharing that manifold. A fifth experiment was designed
to test whether exposing humans to a mixture of labeled and unlabeled data
following a 1D manifold in 2D space would lead to behavior similar to that
of an ML making the manifold assumption. We found that participants were
able to produce labelings similar to that of an SSL model using the manifold
assumption, but that, for our chosen distribution and stimuli, two things were
necessary: a number of labeled points which ruled out simple hypotheses, and
hints that particular stimuli were similar to each other.

3 Our Theoretical Models for Semi-Supervised
Learning

To account for human SSL behaviors, we developed several new ML models
that are cognitively plausible [12]. Recall the empirical experiments showed
that two people receiving exactly the same training experience will classify cer-
tain test items in opposite ways depending on the other items that appear in
the test set. This test-item effect can be induced by either the order or the
distribution of test items. We consider test-item effects as arising from online
semi-supervised learning, and compared three novel computational models: (i)
a non-parametric Bayesian model (Dirichlet Process Mixture model or DPMM)
similar to Anderson’s Rational model of categorization but extended to online
semi-supervised learning by marginalization; (ii) a non-parametric regression
model (Nadaraya-Watson kernel estimator) similar to exemplar models of cat-
egorization but extended to online semi-supervised learning by a self-training
procedure; and (iii) an online semi-supervised parametric mixture model (PMM)
similar to prototype models of categorization. The empirical data are consistent
with some parametrization of the DPMM and PMM approaches but are not well
explained by the NKWE approach, suggesting that test-item effects can provide
important empirical constraints on theories of human category learning.

Another SSL model we developed is for a learning setting of importance
to large scale machine learning: potentially unlimited data arrives sequentially,
but only a small fraction of it is labeled. The learner cannot store the data;
it should learn from both labeled and unlabeled data, and it may also request
labels for some of the unlabeled items. This setting is frequently encountered
in real-world applications and has the characteristics of online, semi-supervised,
and active learning. Yet previous learning models fail to consider these char-
acteristics jointly. We present OASIS, a Bayesian model for this learning set-
ting [4]. The main contributions of the model include the novel integration of
a semi-supervised likelihood function, a sequential Monte Carlo scheme for ef-
ficient online Bayesian updating, and a posterior-reduction criterion for active
learning.
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Finally, we introduced sparsity into SSL. We pose transductive classification
as a matrix completion problem. By assuming the underlying matrix has a low
rank, our formulation is able to handle three problems simultaneously: i) multi-
label learning, where each item has more than one label, ii) transduction, where
most of these labels are unspecified, and iii) missing data, where a large number
of features are missing. We obtained satisfactory results on several real-world
tasks, suggesting that the low rank assumption may not be as restrictive as it
seems. Our method allows for different loss functions to apply on the feature and
label entries of the matrix. The resulting nuclear norm minimization problem
is solved with a modified fixed-point continuation method that is guaranteed to
find the global optimum [5].

4 Our Enhancement of Human Learning Based
on Machine Learning Principles

We developed “human algorithms” informed by SSL which can affect the learn-
ing of cooperative groups of learners. One such algorithm is the Human Co-
Training procedure [11]. Under Co-Training, two learners collaborate to label
a set of unlabeled data according to a concept learned from a set of labeled
data. This method is unique in that neither learner has a full view of the data.
Instead, the features are split into two views such that each collaborator sees
all of the data, but only represented by the features within their split or view.
For example, if the data exists in two dimensions, then both learners would per-
ceive the data as varying in only one dimension, that dimension being different
for both collaborators. If the data and the classification concept follow certain
constraints, the unlabeled data can be labeled correctly by the Co-Training pair
using a smaller number of labeled examples than either learner could on their
own. In an experiment where participant pairs collaborated on classification
tasks under varying communication constraints, we were able to show that the
Co-Training policy leads collaborators to jointly produce unique and potentially
valuable classification outcomes. These outcomes are not generated under other
collaboration policies and that these behaviors are expected by existing machine
learning models.

We also investigated the reverse problem of human teaching in the presence
of labeled and unlabeled data [7]. We study the empirical strategies that humans
follow as they teach a target concept with a simple 1D threshold to a robot.
Previous studies of computational teaching, particularly the teaching dimension
model and the curriculum learning principle, offer contradictory predictions
on what optimal strategy the teacher should follow in this teaching task. We
show through behavioral studies that humans employ three distinct teaching
strategies, one of which is consistent with the curriculum learning principle,
and propose a novel theoretical framework as a potential explanation for this
strategy. This framework, which assumes a teaching goal of minimizing the
learners expected generalization error at each iteration, extends the standard
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teaching dimension model and offers a theoretical justification for curriculum
learning.

5 Other Related Work

We list some other work not directly on human SSL, but is in service of (or has
the potential to) the project.

An important problem in cognitive psychology is to quantify the perceived
similarities between stimuli. This is of great importance to the study of human
SSL. Previous work attempted to address this problem with multi-dimensional
scaling (MDS) and its variants. However, there are several shortcomings of the
MDS approaches. We propose Yada, a novel general metric learning procedure
based on two-alternative forced-choice behavioral experiments [9]. Our method
learns forward and backward nonlinear mappings between an objective space in
which the stimuli are defined by the standard feature vector representation, and
a subjective space in which the distance between a pair of stimuli corresponds
to their perceived similarity. Yada outperforms several standard embedding and
metric learning algorithms, both in terms of likelihood and recovery error.

How does one know if a human learner has truly learned a concept, or is he
simply overfitting? We offer a measure that combines computational learning
theory and cognitive psychology to gauge human generalization abilities [14].
We propose to use Rademacher complexity, originally developed in computa-
tional learning theory, as a measure of human learning capacity. Rademacher
complexity measures a learners ability to fit random labels, and can be used to
bound the learners true error based on the observed training sample error.

Other work includes human multi-arm bandit tasks [3], sensorimotor child-
parent interaction for word learning [10], and human expert knowledge in latent
topic models [1].
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